K[Z(n),σ]上的分次擴張
摘 要:設V是除環(huán)K的全賦值環(huán),Aut(K)是K的自同構群,Z是整數(shù)加群,σ:Z(n)→Aut(K)是一個群同態(tài)。K[Z(n),σ]是Z(n)在K上的斜群環(huán),K(Z(n),σ)是K[Z(n),σ]的商除環(huán).設單同態(tài)i:Z(n-1)→Z(n),將Z(n-1)自然地嵌入Z(n)的前n-1個分量,則τ=σ°i:Z(n-1)→Aut(K)是一個群同態(tài),此時斜群環(huán)K[Z(n-1),τ]可以自然地看作是KZ(n),σ的子環(huán).令D=K(Z(n-1),τ),則D是K[Z(n-1),τ]的商除環(huán).令Y=X(0,0,…,0,1),θ=σ(0,0,…,0,1).假設A是V在KZ(n),σ上的分次擴張,Jg(A)是A的分次Jacobson根,則AJg(A)是V在K(Z(n),σ)上的高斯擴張.假設AJg(A)∩D=S0,AJg(A)∩DY,Y-1;θ=B,可以得出B是S0在DY,Y-1;θ上的分次擴張.
關鍵詞:全賦值環(huán);分次擴張;高斯擴張;商除環(huán)
中圖分類號:O153.3 文獻標識碼:A AMS(2000)主題分類號:16W50
Abstract:Let V be a total valuation ring of a division ring K,Aut(K) be the group of automorphisms of K,Z be the additive group of integers,and σ:Z(n)→Aut(K) be a group homomorphism.Let KZ(n),σ be the skew group ring of Z(n) over K,K(Z(n),σ) be the quotient division ring of KZ(n),σ.Let the injective i:Z(n-1)→Z(n) embed Z(n-1) naturally into the front n-1 components of Z(n),then τ=σ°i:Z(n-1)→Aut(K) is a group homomorphism,and the skew group ring K[Z(n-1),τ] can be naturally regarded as a subring of KZ(n),σ.Let D=K(Z(n-1),τ),then D is the quotient division ring of K[Z(n-1),τ].Let Y=X(0,0,…,0,1),θ=σ(0,0,…,0,1).Suppose that A is a graded extension of V in KZ(n),σ and Jg(A) is the graded Jacobson radical of A,then AJg(A) is a Gauss extension of V in K(Z(n),σ).Assuming AJg(A)∩D=S0,AJg(A)∩DY,Y-1;θ=B,it follows that B is a graded extension of S0 in D[Y,Y-1;θ].
Keywords:total valuation ring;graded extension;gauss extension;quotient division ring
1 概述
設V是除環(huán)K的全賦值環(huán),σ:Z(n)→Aut(K)是一個群同態(tài).本文將研究K[Z(n),σ]上的分次擴張。(剩余7349字)