羅爾定理中輔助函數(shù)的構(gòu)造法
摘 要:輔助函數(shù)的構(gòu)造是利用羅爾定理證明微分中值等式的關(guān)鍵。本文采用逆向思維法對(duì)微分中值問題中構(gòu)造輔助函數(shù)的常見題型作歸納和總結(jié),這種解法對(duì)利用羅爾定理證明的中值等式問題具有一定的普遍適用性。
關(guān)鍵詞:羅爾定理;輔助函數(shù);微分方程;通解;逆向思維法
The Construction of Auxiliary Functions in Rolle's Theorem
Guo Yuanchun1 Chen Siyuan1 Ma Xiaoyan2
1.Xi'an SiYuan University,Department of Basic Course ShanxiXi’an 710038;
2.Xi'an SiYuan University,Higher Education Marketing Research Center ShanxiXi’an 710038
Abstract:The construction of auxiliary function is the key to prove the differential mean value equation by Rolle's theorem.In this paper,the general problems of constructing auxiliary functions in differential mean value problems are summarized by using reverse thinking method.This method has widely applicability to the mean value equality problem proved by Rolle's theorem.
Keywords: Rolle's Theorem;auxiliary function;differential equation;general solution;reverse thinking method
微分中值定理在微積分學(xué)中占有十分重要的地位,是用函數(shù)局部性質(zhì)推斷整體性質(zhì)的有力工具。(剩余6498字)