一類(lèi)帶有奇異項(xiàng)和臨界增長(zhǎng)的 Schr dinger -Possion次橢圓方程正解的存在性
打開(kāi)文本圖片集
摘要:本文研究了在 Heisenberg 群上具有奇異和臨界增長(zhǎng)的 Schr?dinger-Possion 系統(tǒng),利用 Brézis-Lieb 和 Brézis-Nirenberg 引理, 得到了正解的存在性和多重性.
關(guān)鍵詞: Schr?dinger-Poisson 系統(tǒng);變分方法;擾動(dòng)方法;Heisenberg
中圖分類(lèi)號(hào): O177.91 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):1009-3583(2024)-0091-08
Existence of Positive Solutions for a Class of Schr dinger-Possion Subelliptic Equations with Singular Termsand Critical Growth
ZHU Yi-ying1 , SUO Hong-min1* , AN Yu-cheng2 , ZHANG Peng3
(1. College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China;2. School of Science,Guizhou Institute of Engineering and Application Technology, Bijie 551700, China;3. School of Mathematics, Zunyi Normal Univer-sity, Zunyi 563006, China)
Abstract: This paper investigates the Schr ?dinger-Posion system with singular and critical growth on the Heisenberg group. Using the Brézis-Lieb and Brézis-Nierenberg lemmas, the existence and multiplicity of positive solutions are obtained.
keywords: Schr?dinger-Posion system; variational method; perturbation method; Heisenberg
一、引言和主要結(jié)果
文中我們?cè)贖eisenberg 群上考慮具有奇異和臨界增長(zhǎng)的 Schr?dinger-Possion 系統(tǒng)
正解的存在性和多重性,其中 是實(shí)參數(shù),是Heisenberg 群上的次Laplace 算子,是具有光滑邊界的有界域.
Loiudice 在文獻(xiàn)[2]中考慮了如下的次橢圓方程
當(dāng) q=2時(shí),對(duì)于任意的。(剩余5146字)