分數(shù)階Boussinesq-Coriolis方程在變指數(shù)Fourier-Besov空間中解的整體適定性和正則性
打開文本圖片集
摘要:基于變指數(shù)Fourier-Besov函數(shù)空間理論,利用Littlewood-Paley分解工具、Fourier局部化方法和Banach壓縮映射原理,通過建立線性項與非線性項的估計,證明分數(shù)階Boussinesq-Coriolis方程在臨界變指數(shù)空間)(R3)中解的整體適定性和Gevrey類正則性.
關鍵詞:Boussinesq-Coriolis方程;變指數(shù)Fourier-Besov空間;整體適定性;Gevrey類正則性
中圖分類號:O174.2文獻標志碼:A文章編號:1671-5489(2024)05-1043-09
Global Well-Posedness and Regularity of Solutions to Fractional Boussinesq-Coriolis Equations in Variable Exponent Fourier-Besov Spaces
LI Fengjuan,SUN Xiaochun,WU Yulian
(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
Abstract:Based on the theory of variable exponent Fourier-Besov function spaces,we used Littlewood-Paley decomposition tools,F(xiàn)ourier localization methods and Banach contraction mapping principle.By establishing estimations for both linear and nonlinear terms,we proved the global well-posedness and the Gevrey class regularity of the solutions to the fractional Boussinesq-Coriolis equations in critical variable exponent Fourier-Besov spaces 3)(R3).
Keywords:Boussinesq-Coriolisequation;variable exponent Fourier-Besovspace;globalwell-posedness;Gevrey class regularity
0引言
考慮三維分數(shù)階不可壓縮Boussinesq-Coriolis方程解的初值問題:
其中:u=(u(x,).u2(x.).3(x.t),=p(x.),=(x.t)分別為流體在點(x,t)∈R3X(0,∞)的未知速度、未知壓力和溫度;正常數(shù)v,μ和g分別為黏度系數(shù)、熱擴散系數(shù)和重力加速度;e3×u為CiR為流體燒垂直單位矢量e=0裝速gk表示浮力△=表示Laplace算子.文獻[1-3]給出了問題(1)的物理意義.Wang證明了三維分數(shù)階磁流體方程在臨界變指數(shù)Fourier-Besov空間中解的整體適定性和解析性;Abidin等5]證明了當初值。(剩余8218字)