三角代數(shù)上的雙Lie triple導子
打開文本圖片集
【摘 要】 借助雙模結(jié)構(gòu)證明了三角代數(shù)上的每一個雙Lie triple導子[δ]都可以分解為inner雙導子、 extremal雙導子以及中心映射之和。作為應用,在上三角矩陣代數(shù)和套代數(shù)的雙Lie triple導子上得到了同樣結(jié)論。
【關(guān)鍵詞】 三角代數(shù);雙Lie triple導子;上三角矩陣代數(shù);套代數(shù)
Bi-Lie Triple Derivation on Triangular Algebras
Liang Xinfeng, Guo Haonan
(Anhui University of Science and Technology, Huainan 232000, China)
【Abstract】 This paper proves that under mild conditions, every bi-Lie triple derivation on triangular algebra can be decomposed into the sum of an inner biderivation, an extremal biderivation, and a central mapping using a faithful bimodule structure. As applications, the same conclusions are obtained on the bi-Lie triple derivations of upper triangular matrix algebras and nest algebras.
【Key words】 triangular algebra; bi-Lie triple derivation; upper triangular algebras; nest algebras
〔中圖分類號〕 O135.3 〔文獻標識碼〕 A 〔文章編號〕 1674 - 3229(2023)04- 0009 - 08
0 引言
對于帶有中心[CΑ]且有單位元的結(jié)合環(huán)[Α],引入一些必要的映射。(剩余3929字)