多項(xiàng)式型迭代方程的一致凸解
打開文本圖片集
【摘 要】 利用[Schauder]不動(dòng)點(diǎn)定理,討論多項(xiàng)式型迭代函數(shù)方程在實(shí)數(shù)域[R]上的一致凸解存在性的充分條件。再通過[Banach]收縮原理,得到該多項(xiàng)式型迭代函數(shù)方程一致凸解唯一性、穩(wěn)定性的充分條件。
【關(guān)鍵詞】 函數(shù)方程;迭代;一致凸解
Uniformly Convex Solutions to Polynomial-like Iterative Equation
Xia Menglian
(Chongqing Normal University, Chongqing 401331, China)
【Abstract】 In this paper, we will use the Schauder fixed point theorem to discuss the sufficient conditions for the existence of uniformly convex solutions to polynomial iterative functional equations in the real number field R. The sufficient conditions for the uniqueness and stability of the uniformly convex solution to the polynomial-like iterative functional equation are obtained by using the Banach contraction principle.
【Key words】 functional equation; iteration; the uniformly convex solutions
〔中圖分類號(hào)〕 O193 〔文獻(xiàn)標(biāo)識(shí)碼〕 A 〔文章編號(hào)〕 1674 - 3229(2024)02- 0016 - 04
[收稿日期] 2023-08-17
[作者簡(jiǎn)介] 夏夢(mèng)蓮(1999- ),女, 重慶師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院碩士研究生,研究方向:微分方程與動(dòng)力系統(tǒng)。(剩余5963字)