基于衛(wèi)星微波數(shù)據(jù)與深度學習的臺風風速預測模型研究
打開文本圖片集
摘要:文章基于衛(wèi)星微波數(shù)據(jù)與深度學習技術(shù),提出了一種臺風風速估計的方法。通過對衛(wèi)星微波數(shù)據(jù)進行預處理和特征提取,建立基于深度學習的模型。實驗結(jié)果表明,該方法能夠?qū)崿F(xiàn)對臺風風速的精確估計,具有較高的準確性和穩(wěn)定性。
關(guān)鍵詞:衛(wèi)星微波數(shù)據(jù);深度學習;臺風風速;卷積神經(jīng)網(wǎng)絡(luò)
doi:10.3969/J.ISSN.1672-7274.2023.11.050
中圖分類號:TM 614,TP 3 文獻標志碼:A 文章編碼:1672-7274(2023)11-0-03
Research on Typhoon Wind Speed Prediction Model Based on Satellite Microwave Data and Deep Learning
LAN Bin
(Shenzhen Branch of CNOOC Information Technology Co., Ltd., Shenzhen 518000, China)
Abstract: This article proposes a method for estimating typhoon wind speed based on satellite microwave data and deep learning technology. A deep learning based model was established by preprocessing and feature extraction of satellite microwave data. The experimental results show that this method can achieve accurate estimation of typhoon wind speed, with high accuracy and stability.
Key words: satellite microwave data; deep learning; typhoon wind speed; convolutional neural network
臺風是自然界最強烈的氣象災害之一,其強烈的風力和巨大的降雨量可能導致嚴重的人員傷亡和財產(chǎn)損失。(剩余2550字)