悦月直播免费版app下载 - 悦月直播app大全下载最新版本免费安装软件

基于RSSI指紋庫(kù)的變壓器局部放電定位

  • 打印
  • 收藏
收藏成功


打開(kāi)文本圖片集

摘  要:為在變壓器發(fā)生局部放電時(shí)能夠?qū)植糠烹娫催M(jìn)行準(zhǔn)確定位,提出一種基于特高頻電磁波信號(hào)強(qiáng)度(RSSI)的指紋庫(kù)定位方法。在實(shí)驗(yàn)室搭建搭建實(shí)驗(yàn)平臺(tái),運(yùn)用采集到的特高頻電磁波信號(hào)強(qiáng)度建立RSSI指紋庫(kù),再利用廣義回歸神經(jīng)網(wǎng)絡(luò)(GRNN)算法進(jìn)行定位,實(shí)驗(yàn)結(jié)果驗(yàn)證了該方法的有效性。

關(guān)鍵詞:變壓器;局部放電;定位;RSSI指紋;廣義回歸神經(jīng)網(wǎng)絡(luò)

中圖分類(lèi)號(hào):TM41      文獻(xiàn)標(biāo)志碼:A          文章編號(hào):2095-2945(2022)09-0023-04

Abstract: In order to locate the partial discharge power supply accurately when partial discharge occurs in transformer, a fingerprint library location method based on a received signal strength indicator (RSSI) of ultra-high frequency electromagnetic waveis proposed. An experimental platform is built in the laboratory, and the RSSI fingerprint database is established by collecting the UHF electromagnetic wave signal strength, and then the generalized regression neural network (GRNN) algorithm is used for positioning. The experimental results verify the effectiveness of the method.

Keywords: transformer; partial discharge; location; RSSI fingerprint; generalized regression neural network

目前,常用變壓器局部放電定位方法主要有電氣法、超聲波法和特高頻法(Ultra High Frequency, UHF)[1]。(剩余3331字)

目錄
monitor