賦p-Amemiya范數(shù)的Orlicz函數(shù)空間的一致正規(guī)結(jié)構(gòu)
打開文本圖片集
摘 要:主要研究了賦p-Amemiya范數(shù)的Orlicz函數(shù)空間的一致正規(guī)結(jié)構(gòu)。給出了賦p-Amemiya范數(shù)的Orlicz函數(shù)空間具有一致正規(guī)結(jié)構(gòu)的充分必要條件,統(tǒng)一了賦Luxemburg范數(shù)和Orlicz范數(shù)的經(jīng)典Orlicz函數(shù)空間的相應(yīng)結(jié)果。
關(guān)鍵詞:p-Amemiya范數(shù); 一致正規(guī)結(jié)構(gòu); Orlicz函數(shù)空間
DOI:10.15938/j.jhust.2024.04.017
中圖分類號: O177.3
文獻標(biāo)志碼: A
文章編號: 1007-2683(2024)04-0152-07
Uniformly Normal Structure of Orlicz Function Spaces
Equipped with the p-Amemiya Norm
ZUO Mingxia, XU Zeyu
(School of Science, Harbin University of Science and Technology, Harbin 150080, China)
Abstract:In this paper, we mainly investigate the uniformly normal structure of Orlicz function spaces equipped with the p-Amemiya norm. A necessary and sufficient condition for Orlicz function spaces equipped with the p-Amemiya norm to have a uniformly normal structure is given. The corresponding results for the classical Orlicz function spaces equipped with both Luxemburg norm and Orlicz norm are unified.
Keywords:p-Amemiya norm; uniformly normal structure; Orlicz function spaces
0 引 言
與不動點理論密切相關(guān),1968年L.P.Belluce在Banach空間中引入了正規(guī)結(jié)構(gòu)(NS)的概念[1],1984年J.S.Bae引入了一致正規(guī)結(jié)構(gòu)(UNS)的概念[2]。(剩余12642字)