基于LSTM的邊境頻譜占用度預(yù)測(cè)
打開文本圖片集
摘要:通過長(zhǎng)短記憶神經(jīng)網(wǎng)絡(luò)對(duì)邊境頻譜占用度數(shù)據(jù)進(jìn)行學(xué)習(xí),建立了基于邊境頻譜占用度數(shù)據(jù)特征的預(yù)測(cè)模型,分析了影響預(yù)測(cè)準(zhǔn)確度的主要因素并得出結(jié)論。實(shí)驗(yàn)結(jié)果表明,文章中提出的預(yù)測(cè)模型具有較高的準(zhǔn)確性,是一種有效的邊境頻譜占用度預(yù)測(cè)方法。
關(guān)鍵詞:深度學(xué)習(xí);LSTM;頻譜占用度預(yù)測(cè)
doi:10.3969/J.ISSN.1672-7274.2022.07.008
中圖分類號(hào):TN 98 文獻(xiàn)標(biāo)示碼:A 文章編碼:1672-7274(2022)07-00-03
Spectrum Occupancy Prediction Based on LSTM
LU Weidong, LUO Shiwei, LIU Yizhuo
(State Radio Monitoring Center Harbin Monitoring Station, Harbin 150010, China)
Abstract: Based on the long and short memory neural network, a prediction model based on the characteristics of border spectrum occupancy data was established, and the main factors affecting the accuracy of prediction were analyzed. The experimental results show that the proposed prediction model has high accuracy and is an effective method for predicting border spectrum occupancy.
Key words: deep learning; LSTM; spectrum occupancy prediction
0 引言
頻譜占用度是用來描述無線電頻譜資源利用率的重要指標(biāo),其也可以反映一個(gè)地區(qū)的頻譜利用率變化趨勢(shì),邊境地區(qū)的無線電監(jiān)測(cè)的重要任務(wù)之一就是獲取準(zhǔn)確的頻譜占用度,為上級(jí)無線電主管部門制定頻率使用規(guī)劃和國(guó)際臺(tái)站申報(bào)計(jì)劃提供重要依據(jù)。(剩余1421字)