廢鋼資源發(fā)展現(xiàn)狀及廢鋼分類研究
摘 要:文章分析近些年廢鋼資源的增長(zhǎng)趨勢(shì)和利用狀況,分析傳統(tǒng)圖像分類方法應(yīng)用于廢鋼分類的局限性,并展望卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用于廢鋼分類的可行性及未來研究方向。
關(guān)鍵詞:廢鋼分類;研究綜述;卷積神經(jīng)網(wǎng)絡(luò)
中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2022)11-0088-03
Abstract: In this paper, the growth trend and utilization of scrap resources in recent years are summarized, the limitations of traditional image classification methods in scrap classification are analyzed, and the feasibility and future research direction of the application of convolutional neural network in scrap classification are predicted.
Keywords: scrap classification; research review; convolution neural network
近年來廢鋼鐵資源增長(zhǎng)迅速,其重要性也與日俱增,然而鋼鐵企業(yè)對(duì)廢鋼鐵的科學(xué)管理水平仍然較低。(剩余5720字)