加權(quán)變指標(biāo)極大Herz型空間的對偶空間
打開文本圖片集
摘要:變指數(shù)函數(shù)空間因其在非標(biāo)準(zhǔn)增長條件的方程應(yīng)用領(lǐng)域的重要作用而受人關(guān)注。本文通過嵌入性質(zhì),log-H?lder連續(xù)性及變指標(biāo)權(quán)函數(shù)的相關(guān)引理等工具,研究了加權(quán)變指標(biāo)極大Herz空間的對偶性,以及一類次線性算子在此空間上的有界性。
關(guān)鍵詞:加權(quán)極大Herz空間;變指標(biāo);對偶性;次線性算子
中圖分類號(hào):O177文獻(xiàn)標(biāo)志碼:A文獻(xiàn)標(biāo)識(shí)碼
Duality of weighted grand Herz spaces with variable exponents
ZHOU Meng,WANG Yingjie,TANG Canqin*
(School of Science, Dalian Maritime University,Dalian, Liaoning 116026, China)
Abstract: Function space with variable exponents is widely concerned because of its important applications in equations with non-standard growth conditions. In this paper, by the use of space embedding, log-H?lder continuity of variable exponent and some related properties of variable weight function, the authors obtain the duality of the weighted grand Herz spaces with variable exponents. Furthermore, the boundedness of some sublinear operators in these spaces is also considered.
Key words: weighted grand Herz spaces;variable exponent;duality;sublinear operators
0 引言
變指標(biāo)函數(shù)空間的研究,不僅基于其理論研究意義,更因其在電變流體、圖像恢復(fù)及其它適合非標(biāo)準(zhǔn)增長條件的方程模型[1]等領(lǐng)域的重要應(yīng)用而引人注目。(剩余6079字)