對素環(huán)上的廣義導(dǎo)子與映射之間的關(guān)系的研究
打開文本圖片集
摘要:設(shè)2-扭自由素環(huán),,設(shè),且-導(dǎo)子,并帶有伴隨-導(dǎo)子.若對任意,滿足且,則或上.若滿足且,則或上.用廣義導(dǎo)子的相關(guān)性質(zhì)研究與其對應(yīng)的映射之間的關(guān)系。
關(guān)鍵詞:素環(huán) Jordan理想 導(dǎo)子 廣義導(dǎo)子
中圖分類號:O153.3 文獻標識碼:A 文章編號:1672-3791(2022)02(b)-0000-00
Study on the Relationship between Generalized Derivations and Mappings on Prime Rings
Abstract:Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal and a subring of R. Suppose θ is an automorphism of R and F : R → R is a generalized (θ, θ)-derivation with associated (θ, θ)-derivation d.Ifwith,then either d = 0 on R or J ? Z(R).Ifwith,then either d = 0 on R or J ? Z(R).
Key Words: Prime ring; Jordan ideal; Derivation; Generalized derivation
2008年,Asma Ali和Deepak Kumar1[1]證明:設(shè)2-扭自由素環(huán),,設(shè),且-導(dǎo)子,并帶有伴隨-導(dǎo)子。(剩余1382字)