具有接種與潛伏期的SVEIR模型穩(wěn)定性研究
打開文本圖片集
摘 要:該文建立一類具有接種與潛伏期的SVEIR倉室模型,利用再生矩陣的方法求出模型的基本再生數(shù),通過基本再生數(shù)確定模型的傳播動(dòng)力學(xué)。當(dāng)R0≤1時(shí),系統(tǒng)的無病平衡點(diǎn)是全局漸近穩(wěn)定的;當(dāng)R0>1時(shí),系統(tǒng)的地方病平衡點(diǎn)是全局漸近穩(wěn)定的。
關(guān)鍵詞:傳染病模型;基本再生數(shù);Lyapunov泛函;全局穩(wěn)定性;平衡點(diǎn)
中圖分類號:R183 文獻(xiàn)標(biāo)志碼:A 文章編號:2095-2945(2023)16-0016-04
Abstract: In this paper, a kind of SVEIR compartmental model with inoculation and incubation period is established, the basic reproduction number of the model is obtained by the method of reproducing matrix, and the propagation dynamics of the model is determined by the basic reproduction number. If R0≤1, then the disease free equilibrium is globally asymptotically stable, and if R0>1, then the endemic equilibrium is globally asymptotically stable.
Keywords: models of epidemic diseases; basic reproduction number; Lyapunov functional; global stability; equilibrium point
隨著社會(huì)經(jīng)濟(jì)的發(fā)展和人類生活水平的提高,各種社會(huì)問題也相繼出現(xiàn)。(剩余3634字)